Appendix G

Greenhouse Gas Emission Calculations

Great River Energy

Pilot Knob to Burnsville
Construction Greenhouse Gas Emissons
Summary

	Greenhouse Gas Emissions From Construction Engines			
(tons)				
Description	$\mathbf{C O}_{2}$	$\mathbf{C H}_{4}$	$\mathbf{N}_{\mathbf{2}} \mathbf{O}$	$\mathbf{C O}_{\mathbf{2}} \mathbf{e}^{\mathbf{a}}$
Off-Road Engine Emissions	774.77	0.03	0.01	777.42
Commuters and Delivery Vehicles	362.42	0.00	0.00	362.42
TOTAL	$\mathbf{1 1 3 7 . 1 8}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 1}$	$\mathbf{1 1 3 9 . 8 4}$
${ }^{\mathrm{a}} \mathrm{CO}_{2} \mathrm{e}=$ carbon dioxide equivalent. Includes global warming potentials from 40 CFR 98 Table A-1.				

Global Warming Potentials		
$\mathbf{C O}_{2}$	$\mathbf{C H}_{4}$	$\mathbf{N}_{2} \mathbf{O}$
1	25	298

Source: 40 CFR 98 Table A-1: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-C/part-98\#Table-A-1-to-Subpart-A-of-Part98

Great River Energy Pilot Knob to Burnsville
Construction Greenhouse Gas Emissons
Greenhouse Gas Emissions from On Road Construction Traffic

On-Road Vehicles					
	Vehicles per day	Miles per vehicle	Number of Days	Fuel Used (gallons)	CO_{2} Emissions ${ }^{\text {a }}$ (tons)
Commuter Vehicles - Gasoline ${ }^{\text {b,c }}$	25	60	560	35,000	343
Delivery Trucks - Diesel ${ }^{\text {d }}$	1	60	160	1,477	16.58
Concrete Mixer Trucks - Diesel ${ }^{\text {e }}$	1	60	15	265	2.97

${ }^{\text {a }}$ Assumes 1 gallon of gasoline $=8,887$ grams CO_{2} and 1 gallon of diesel $=10,180 \mathrm{~g} \mathrm{CO} 2$, per US EPA's "Greenhouse Gas Emissions from a Typical Passenger Vehicle," available online at: https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100U8YT.pdf
${ }^{\mathrm{b}}$ Assumes commuters travel 30 miles each way (60 miles round trip) per day, with a fuel economy of 24 miles per gallon, per US EPA and US Department of Energy Fuel Economy data for combined city and highway driving in 2023, available online at: https://www.fueleconomy.gov/feg/download.shtml.
${ }^{\text {c }}$ Assumes commuters will travel for 112 weeks, 5 days a week.
${ }^{d}$ Assumes delivery trucks travel 30 miles each way (60 miles round trip) per day, with a fuel economy of 6.5 miles per gallon, industry average.
${ }^{e}$ Assumes concrete mixer trucks travel 30 miles each way (60 miles round trip) per day, with a fuel economy of 3.4 miles per gallon, industry average.
http://ascpro0.ascweb.org/archives/cd/2012/paper/CPRT221002012.pdf\#:~:text=The\ National\ Ready\ Mix\ Concr ete\%20Association\%20\%28NRMCA\%29\%20in,average\%203.4\%20miles\%20per\%20gallon\%20of\%20diesel\%20fuel.

1 short ton $=$	907,185	grams
1 gal gasoline $=$	8,887	g CO 2
1 gal diesel $=$	10,182	g CO 2
Commuter Vehicle MPG $=$	24	
Delivery Trucks (Diesel) MPG $=$	6.5	
Concrete Mixer Truck MPG $=$	3.4	

