Appendix G

Greenhouse Gas Emission Calculations

Great River Energy Pilot Knob to Burnsville Construction Greenhouse Gas Emissons Summary

	Greenhouse Gas Emissions From Construction Engines			
	(tons)			
Description	CO ₂	CH₄	N ₂ O	CO ₂ e ^a
Off-Road Engine Emissions	774.77	0.03	0.01	777.42
Commuters and Delivery Vehicles	362.42	0.00	0.00	362.42
TOTAL	1137.18	0.03	0.01	1139.84
^a CO ₂ e = carbon dioxide equivalent. Includes global warming potentials from 40 CFR 98 Table A-1.				

Global Warming Potentials				
CO ₂	CH₄	N ₂ O		
1	25	298		

Source: 40 CFR 98 Table A-1: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-C/part-98#Table-A-1-to-Subpart-A-of-Part-98

Great River Energy Pilot Knob to Burnsville Construction Greenhouse Gas Emissons Greenhouse Gas Emissions from On Road Construction Traffic

On-Road Vehicles						
	Vehicles per day	Miles per vehicle	Number of Days	Fuel Used (gallons)	CO ₂ Emissions ^a (tons)	
Commuter Vehicles - Gasoline ^{b,c}	25	60	560	35,000	343	
Delivery Trucks - Diesel ^d	1	60	160	1,477	16.58	
Concrete Mixer Trucks - Diesel ^e	1	60	15	265	2.97	

^a Assumes 1 gallon of gasoline = 8,887 grams CO₂ and 1 gallon of diesel = 10,180 g CO₂, per US EPA's "Greenhouse Gas Emissions from a Typical Passenger Vehicle," available online at: https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100U8YT.pdf

^b Assumes commuters travel 30 miles each way (60 miles round trip) per day, with a fuel economy of 24 miles per gallon, per US EPA and US Department of Energy Fuel Economy data for combined city and highway driving in 2023, available online at: https://www.fueleconomy.gov/feg/download.shtml.

^c Assumes commuters will travel for 112 weeks, 5 days a week.

^d Assumes delivery trucks travel 30 miles each way (60 miles round trip) per day, with a fuel economy of 6.5 miles per gallon, industry average.

^e Assumes concrete mixer trucks travel 30 miles each way (60 miles round trip) per day, with a fuel economy of 3.4 miles per gallon, industry average.

http://ascpro0.ascweb.org/archives/cd/2012/paper/CPRT221002012.pdf#:~:text=The%20National%20Ready%20Mix%20Concr ete%20Association%20%28NRMCA%29%20in,average%203.4%20miles%20per%20gallon%20of%20diesel%20fuel.

1 short ton = 1 gal gasoline = 1 gal diesel =	907,185 8,887 10,182	grams g CO2 g CO2
Commuter Vehicle MPG=	24	
Concrete Mixer Truck MPG=	3.4	